Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy.
نویسندگان
چکیده
The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.
منابع مشابه
Novel Porous Iron Molybdate Catalysts for Synthesis of Dimethoxymethane from Methanol: Metal Organic Frameworks as Precursors
As a novel performance, methanol gas conversion to dimethoxymethane (DMM) in one-step based on Fe-Mo-O (iron molybdate mixed oxides) catalysts with high surface area fabricated by metal organic frameworks (MOFs) precursors was improved. For this approach, at first, Fe(III) precursors (iron (III) 1,3,5-benzenetricarboxylate (MIL-100 (Fe) and iron terephthalate (MOF-...
متن کاملCharacterization of an amorphous iridium water-oxidation catalyst electrodeposited from organometallic precursors.
Upon electrochemical oxidation of the precursor complexes [Cp*Ir(H(2)O)(3)]SO(4) (1) or [(Cp*Ir)(2)(OH)(3)]OH (2) (Cp* = pentamethylcyclopentadienyl), a blue layer of amorphous iridium oxide containing a carbon admixture (BL) is deposited onto the anode. The solid-state, amorphous iridium oxide material that is formed from the molecular precursors is significantly more active for water-oxidatio...
متن کاملA combined theoretical and experimental EXAFS study of the structure and dynamics of Au 147 nanoparticles
In this study, we present a framework for characterizing the structural and thermal properties of small nanoparticle catalysts by combining precise synthesis, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) calculations. We demonstrate the capability of this approach by characterizing the atomic structure and vibrational dynamics of Au147. With...
متن کاملInfluence of Operational Parameters and Kinetic Modelling of Catalytic Wet Air Oxidation of Phenol by Al/Zr Pillared Clay Catalyst
Single and mixed oxide Al/Zr-pillared clay (Al/Zr-PILC) catalysts were synthesized and tested for catalytic wet air oxidation (CWAO) of aqueous phenol solution under milder conditions, in a semi-batch reactor. The catalysts were synthesized from natural bentonite clay using ultrasonic treatment during the aging and intercalation steps and were characterized <...
متن کاملIn situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy
Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 138 17 شماره
صفحات -
تاریخ انتشار 2016